skip to main content


Search for: All records

Creators/Authors contains: "Chan, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As intelligent systems increasingly blend into our everyday life, artificial social intelligence becomes a prominent area of research. Intelligent systems must be socially intelligent in order to comprehend human intents and maintain a rich level of interaction with humans. Human language offers a unique unconstrained approach to probe through questions and reason through answers about social situations. This unconstrained approach extends previous attempts to model social intelligence through numeric supervision (e.g. sentiment and emotions labels). In this paper, we introduce the Social-IQ, an unconstrained benchmark specifically designed to train and evaluate socially intelligent technologies. By providing a rich source of open-ended questions and answers, Social-IQ opens the door to explainable social intelligence. The dataset contains rigorously annotated and validated videos, questions and answers, as well as annotations for the complexity level of each question and answer. Social- IQ contains 1, 250 natural in-thewild social situations, 7, 500 questions and 52, 500 correct and incorrect answers. Although humans can reason about social situations with very high accuracy (95.08%), existing state-of-the-art computational models struggle on this task. As a result, Social-IQ brings novel challenges that will spark future research in social intelligence modeling, visual reasoning, and multimodal question answering (QA). 
    more » « less
  2. null (Ed.)
    Recent advances in cyber-infrastructure have enabled digital data sharing and ubiquitous network connectivity between scientific instruments and cloud-based storage infrastructure for uploading, storing, curating, and correlating of large amounts of materials and semiconductor fabrication data and metadata. However, there is still a significant number of scientific instruments running on old operating systems that are taken offline and cannot connect to the cloud infrastructure, due to security and network performance concerns. In this paper, we propose BRACELET - an edge-cloud infrastructure that augments the existing cloud-based infrastructure with edge devices and helps to tackle the unique performance & security challenges that scientific instruments face when they are connected to the cloud through public network. With BRACELET, we put a networked edge device, called cloudlet, in between the scientific instruments and the cloud as the middle tier of a three-tier hierarchy. The cloudlet will shape and protect the data traffic from scientific instruments to the cloud, and will play a foundational role in keeping the instruments connected throughout its lifetime, and continuously providing the otherwise missing performance and security features for the instrument as its operating system ages. 
    more » « less